Fonctions de la respiration

La respiration au sens strict du terme, c'est-àdire la respiration « extérieure », consiste en un échange gazeux entre l'organisme et le milieu ambiant (« respiration intérieure » = oxydation des aliments). Contrairement aux organismes unicellulaires chez lesquels la distance entre les cellules et le milieu environnant est suffisamment courte pour que l'O2 et le CO2 puissent diffuser facilement, l'organisme humain multicellulaire a besoin d'un système de transport spécial par convection pour assurer les échanges gazeux : c'est l'appareil respiratoire et le système circulatoire.

Grâce aux mouvements respiratoires, l'oxygène parvient avec l'air inhalé dans les alvéoles pulmonaires (ventilation) d'où il diffuse dans le sang. L'O2 est transporté dans le sang jusqu'aux tissus ; il diffuse alors dans les mitochondries, à l'intérieur des cellules. Le CO2 qui est produit à ce niveau parcourt le chemin inverse. Les gaz respiratoires sont ainsi transportés par convection sur de longues distances (ventilation, circulation) et par diffusion à travers des membranes limitantes peu épaisses (gaz/fluide dans les alvéoles, sang/tissus en périphérie).

Environ 300 millions de vésicules aux parois peu épaisses, les alvéoles (diamètre de l'ordre de 0.3 mm), se trouvent aux extrémités des ramifications terminales de l'arbre bronchique. Elles sont entourées par un réseau de capillaires pulmonaires très dense. La surface globale de ces alvéoles est d'environ 100 m2. Ainsi, en raison de cette importante surface alvéolaire, les échanges gazeux se font par diffusion, autrement dit le CO2 parvient du sang aux alvéoles tandis que l'O2 diffuse des alvéoles dans le sang des capillaires pulmonaires. Ainsi, le sang peu riche en oxygène (« veineux ») de l'artère pulmonaire est « artérialisé » et gagnera à nouveau la périphérie par le cœur gauche.

Au repos, le cœur pompe environ 5 l de sang par minute successivement à travers les poumons et à travers la circulation générale. Environ 0,3 l d'O2 est transporté par minute avec ce courant sanguin depuis les poumons vers la périphérie (VO2 et environ 0.25 l de CO2 est transporté par minute de la périphérie vers les poumons (VCO2).

Au repos, un débit ventilatoire total (VT) de l'ordre de 7,5 1/min est nécessaire pour apporter ce volume d'O2 de l'environnement aux alvéoles et pour éliminer le CO2. Cet apport est réalisé grâce à l'inspiration et l'expiration d'un volume courant (VT) de 0,5 l et ceci 15 fois par minute (fréquence respiratoire f). La ventilation alvéolaire (VA, de l'ordre de 5,25 l/min, est plus faible que VT ; le reste constitue la ventilation de l'espace mort.

Dans un mélange gazeux, les pressions partielles des divers gaz s'additionnent pour donner la pression totale du mélange gazeux (loi de Dalton). La part relative de chacun des gaz par rapport au volume total du mélange gazeux («concentration fractionnaire») détermine la pression partielle. Une concentration fractionnaire de 0,1 (= 10%) correspond, pour une pression totale (P) de 100 kPa, à une pression partielle de 10 kPa (100 * 0,1).

Composition de l'air sec

Gaz F ( l/l ) Pau niveau de la mer
(kPa) (mmHg)
O2 0,209 21,17 158,8
CO2 0,0003 0,03 0,23
N2 + gaz inertes 0,791 80,1 601
Air sec 1,0 101,3 760

Lors du passage à travers les voies aériennes (bouche, nez, pharynx, système bronchique), l'air inspiré est entièrement saturé d'eau, si bien que la PH2O atteint sa valeur maximale de 6.27 kPa (47 mmHg) à 37 °C (cf. aussi bilan hydrique, p. 138). De ce fait, la PO2, accuse une baisse et passe de 21,33 kPa environ (159 mmHg) à 19,87 kPa (149 mmHg) et PN2 décroît proportionnellement.